D633 and D634 Series Direct Drive
Servo-Proportional Control Valves
with integrated 24 V Electronics
ISO 4401 Size 03 and 05
D633 AND D634 SERIES SERVO CONTROL VALVES

The D633 and D634 Series are Direct Drive Valves (DDV) with electric closed loop spool position control. These valves are throttle valves for 3-, 4-, and 2x2-way applications. They are suitable for electrohydraulic position, velocity, pressure or force control systems including those with high dynamic response requirements.

The spool drive device is a permanent magnet linear force motor which can actively stroke the spool from its spring centered position in both directions. This is an advantage compared with proportional solenoids with one force direction only. The closed loop spool position electronics and pulse width modulated (PWM) drive electronics are integrated into the valve.

The integrated electronics of the valves is a new development featuring SMD technology with pulse width modulated (PWM) current output stage and requires a 24 VDC power supply.

Valves available with explosion protection to EN 50018 and 55019, class II 2G Exde B+H₂ T4, DMT 00 ATEX E 037, CE 0470 for D633 series and II 2G Exde B+H₂ T3, DMT 00 ATEX E 037, CE 0470 for D634 series.

Note: Installation dimensions and electrical connection altered. Special data sheet on request.

NOTICE

➢ Before installation of the valve into the system, the complete hydraulic system must be flushed.
➢ Please read the notes in section “Electronics”, page 6.

Our quality management system conforms to DIN EN ISO 9001.
BENEFITS AND FUNCTION

OPERATIONAL BENEFITS OF DIRECT DRIVE SERVO VALVES (DDV)

➢ Directly driven by a permanent magnet linear force motor with high force level
➢ No pilot oil flow required
➢ Pressure independent dynamic performance
➢ Low hysteresis and low threshold
➢ Low current consumption at and near hydraulic null
➢ Standardized spool position monitoring signal with low residual ripple
➢ Electric null adjust
➢ With loss of supply voltage or broken cable or emergency stop, the spool returns to its spring centered position without passing a load move position.

DIRECT DRIVE VALVE (DDV) OPERATION

The position control loop for the spool with position transducer and linear force motor is closed by the integrated electronics. An electric signal corresponding to the desired spool position is applied to the integrated electronics and produces a pulse width modulated (PWM) current to drive the linear force motor. An oscillator excites the spool position transducer (LVDT) producing an electric signal proportional to spool position. The demodulated spool position signal is compared with the command signal, and the resulting spool position error causes current in the force motor coil until the spool has moved to its commanded position and the spool position error is reduced to zero. The resulting spool position is thus proportional to the command signal.

D633 Series single stage
Servo Control Valve

Hydraulic symbol:
Symbol shown with electric supply on and zero command signal.

PERMANENT MAGNET LINEAR FORCE MOTOR OPERATION

The linear force motor is a permanent magnet differential motor. The permanent magnets provide part of the required magnetic force. For the linear force motor the current needed is considerably lower than would be required for a comparable proportional solenoid. The linear force motor has a neutral mid-position from which it generates force and stroke in both directions. Force and stroke are proportional to current. High spring stiffness and resulting centering force plus external forces (i.e. flow forces, friction forces due to contamination) must be overcome during out-stroking. During backstroking to center position, the spring force adds to the motor force and provides additional spool driving force which makes the valve much less contamination sensitive. The linear force motor needs very low current in the spring centered position. Proportional solenoid systems require two solenoids with more cabling for the same function. Another solution uses a single solenoid, working against a spring. In case of current loss in the solenoid, the spring drives the spool to the end position by passing through a fully open position. This can lead to uncontrolled load movements.
PERFORMANCE SPECIFICATIONS FOR STANDARD MODELS

Operating pressure range
- Ports P, A and B: up to 350 bar (5000 psi)
- Port T: see data for individual series

Temperature range
- Ambient: –20 °C to +60 °C (-4°F to +140°F)
- Fluid: –20 °C to +80 °C (-4°F to +170°F)

Seal material
- NBR, FPM, others on request

Operating fluid
- Mineral oil based hydraulic fluid (DIN 51524, part 1 to 3), others on request

Viscosity
- Recommended: 15 to 100 mm²/s
- Allowed: 5 to 400 mm²/s

System filtration
- High pressure filter (without bypass, but with dirt alarm) mounted in the main flow and if possible directly upstream of the valve.

Class of cleanliness
The cleanliness of the hydraulic fluid particularly affects the performance (spool positioning, high resolution) and wear (metering edges, pressure gain, leakage) of the servo valve.

Recommended cleanliness class
- For normal operation: ISO 4406 < 15 / 12
- For longer life (wear): ISO 4406 < 14 / 11

Filter rating recommended
- For normal operation: β₁₀ ≥ 75 (10 µm absolute)
- For longer life (wear): β₆ ≥ 75 (6 µm absolute)

Installation options
- Any position, fixed or movable
- 30 g, 3 axes

Vibration
- EN60529: class IP 65 with mating connector mounted
- Delivered with an oil sealed shipping plate

4-WAY FUNCTION

- 4-way version
- Spring centred
- Flow control (throttle valve) in port A and port B
- Port Y required if pressure p_T > 50 bar (715 psi) in port T
- For 3-way function close port A or port B of the manifold
- Spools with exact axis cut, 1.5 to 3 % or 10 % overlap available

2X2-WAY FUNCTION

- 2x2-way version
- (Y-Port required)
- Flow control (throttle valve) in port A
- Port Y required
- Connect externally port P with port B, and port A with port T
VALVE FLOW CALCULATIONS

The actual valve flow is dependent on the spool position and the pressure drop across the spool lands.

At 100% command signal (i.e. +10 VDC = 100% valve opening), the valve flow at rated pressure drop $\Delta p_N = 35$ bar per metering land is the rated flow Q_N. For other than rated pressure drop, the valve flow changes at constant command signal according to the square root function for sharp edged orifices.

$$Q = Q_N \sqrt{\frac{\Delta p}{\Delta p_N}}$$

Q [l/min] = calculated flow
Q_N [l/min] = rated flow
Δp [bar] = actual valve pressure drop
Δp_N [bar] = rated valve pressure drop

The real valve flow Q calculated in this way should result in an average flow velocity in ports P, A, B or T of less than 30 m/s.

GENERAL REQUIREMENTS FOR VALVE ELECTRONICS

- Supply 24 VDC, min. 19 VDC, max. 32 VDC
 - Current consumption I_{max} for D633 1.2 A, for D634 2.2 A
 - External fuse per valve for D633 1.6 A (slow), for D634 2.5 A (slow)
- All signal lines, also those of external transducers, shielded.
- Shielding connected radially to \perp (0 V), power supply side, and connected to the mating connector housing (EMC).

EMC: Meets the requirements of emission: EN55011:1998+A1:1999 (limit class: B) and immunity: EN61000-6-2:1999

- Minimum cross-section of all leads ≥ 0.75 mm² (0.001 in²). Consider voltage losses between cabinet and valve.
- Note: When making electric connections to the valve (shield, protective earth), appropriate measures must be taken to ensure that locally different earth potentials do not result in excessive ground currents. See also Moog Application Note TN 353.
VALVE ELECTRONICS WITH 24 VOLT SUPPLY VOLTAGE AND 6+PE POLE CONNECTOR

Command signal 0 to ±10 mA, floating, Valves with current command input
The spool stroke of the valve is proportional to $I_D = -I_E$.
100% valve opening $P \uparrow A$ and $B \uparrow T$ is achieved at $I_D = +10$ mA. At 0 mA command the spool is in centered position. The input pins D and E are inverting. Either pin D or E is used according to the required operating direction. The other pin is connected to signal ground at cabinet side.

Command signal 0 to ±10 V, Valves with voltage command input
The spool stroke of the valve is proportional to $(U_D - U_E)$. 100% valve opening $P \uparrow A$ and $B \uparrow T$ is achieved at $(U_D - U_E) = +10$ V.
At 0 V command the spool is in centered position. The input stage is a differential amplifier. If only one command signal is available, pin D or E is connected to signal ground at cabinet side according to the required operating direction.

Actual value 4 to 20 mA
The actual spool position value can be measured at pin F (see diagram below). This signal can be used for monitoring and fault detection purposes. The spool stroke range corresponds to 4 to 20 mA. The centered position is at 12 mA. 20 mA corresponds to 100% valve opening $P \uparrow A$ and $B \uparrow T$. The position signal output 4 to 20 mA allows detecting a cable break when $I_F = 0$ mA.

Circuit diagram for measurement of actual value I_F (position of spool) for valves with 6+PE pole connector

For failure detection purposes, it is advised to connect pin F of the mating connector and route this signal to the control cabinet.

WIRING FOR VALVES WITH 6+PE CONNECTOR
to EN 175201 Part 804) and mating connector (type R and S, metal shell) with leading protective earth connection (\downarrow). See also Application Note AM 426 E.

<table>
<thead>
<tr>
<th>Valve</th>
<th>Connector</th>
<th>Function</th>
<th>Current Command</th>
<th>Voltage Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>Supply</td>
<td>24 VDC (19 to 32 VDC)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>Supply / Signal Ground</td>
<td>⊥ (0 V)</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td>Not used</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input rated command (differential)</td>
<td>$I_D = -I_E, 0 \text{ to } \pm 10$ mA, $I_E = -I_D, 0 \text{ to } \pm 10$ mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input voltage for U_B and U_E for both signal types is limited to min. -15 V and max. +24 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output actual value spool position</td>
<td>$I_{F}= 4 \text{ to } 20$ mA. At 12 mA spool is in centered position.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protective earth</td>
<td>$R_S = 300 \text{ to } 500$Ω</td>
<td></td>
</tr>
</tbody>
</table>

1) formerly DIN 43563
TECHNICAL DATA

D633/634 Series 7

PERFORMANCE SPECIFICATIONS FOR STANDARD MODELS

<table>
<thead>
<tr>
<th>Model . . . Type</th>
<th>D633</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting pattern</td>
<td>ISO 4401-03-03-0-94</td>
</tr>
<tr>
<td>with or without leakage port Y</td>
<td></td>
</tr>
<tr>
<td>Port diameter</td>
<td>mm ((\text{in}))</td>
</tr>
<tr>
<td>Valve version</td>
<td>Single stage, spool in bushing</td>
</tr>
<tr>
<td>1)</td>
<td>3-way, 4-way, 2x2-way</td>
</tr>
<tr>
<td>Spool actuation</td>
<td>directly, with permanent magnet</td>
</tr>
<tr>
<td>Pilot supply</td>
<td>linear force motor</td>
</tr>
<tr>
<td>Mass</td>
<td>kg ((\text{lb}))</td>
</tr>
<tr>
<td>Rated flow (\pm 10%) at (\Delta p_{\text{n}} = 35 \text{ bar} \ (500 \text{ psi})) per land</td>
<td>l/min ((\text{gpm}))</td>
</tr>
<tr>
<td>Max. valve flow</td>
<td>l/min ((\text{gpm}))</td>
</tr>
<tr>
<td>Operating pressure max.</td>
<td></td>
</tr>
<tr>
<td>Ports P,A,B</td>
<td>bar ((\text{psi}))</td>
</tr>
<tr>
<td>Port T without Y</td>
<td>bar ((\text{psi}))</td>
</tr>
<tr>
<td>Port T with Y</td>
<td>bar ((\text{psi}))</td>
</tr>
<tr>
<td>Port Y</td>
<td>bar ((\text{psi}))</td>
</tr>
<tr>
<td>Response time for 0 to 100% stroke, typical</td>
<td>ms</td>
</tr>
<tr>
<td>Threshold 1)</td>
<td>%</td>
</tr>
<tr>
<td>Hysteresis 1)</td>
<td>%</td>
</tr>
<tr>
<td>Null shift 1) with (\Delta T = 55 \text{ K})</td>
<td>%</td>
</tr>
<tr>
<td>Null leakage flow 1) max. (axis cut)</td>
<td>l/min ((\text{gpm}))</td>
</tr>
</tbody>
</table>

1) At operating pressure \(p_{\text{n}} = 140 \text{ bar} \ (2000 \text{ psi}) \), fluid viscosity of 32 mm\(^2\)/s (0.05 in\(^2\)/s) and fluid temperature of 40 °C (104 °F)
2) See symbols page 4
3) Leakage port Y must be used
 ➢ with 3- and 4-way function and \(p_T > 50 \text{ bar} \ (715 \text{ psi}) \)
 ➢ with 2x2-way function
CHARACTERISTIC CURVES (TYPICAL)

Step response

Flow signal characteristic curve

Valve pressure \(\Delta p \) bar [psi]

10 20 30 50 70 100 150 200 350

[145] [290] [435] [725] [1015] [1450] [2175] [2900] [5076]

Flow rate \(Q \) l/min [gpm]

Pressure signal characteristic curve

Valve flow diagram

\(\Delta p_{max} = 350 \text{ bar (5000 psi)} \)
Mounting pattern
ISO 4401-03-03-0-94, without X port

<table>
<thead>
<tr>
<th>mm</th>
<th>P</th>
<th>A</th>
<th>B</th>
<th>T</th>
<th>X</th>
<th>Y</th>
<th>F₁</th>
<th>F₂</th>
<th>F₃</th>
<th>F₄</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>07,5</td>
<td>07,5</td>
<td>07,5</td>
<td>07,5</td>
<td>03,3</td>
<td>M5</td>
<td>M5</td>
<td>M5</td>
<td>M5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 21,5</td>
<td>12,7</td>
<td>30,2</td>
<td>21,5</td>
<td>40,5</td>
<td>0</td>
<td>40,5</td>
<td>40,5</td>
<td>0</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y 25,9</td>
<td>15,5</td>
<td>15,5</td>
<td>5,1</td>
<td>9</td>
<td>0</td>
<td>-0,75</td>
<td>31,75</td>
<td>31</td>
<td>31,75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>inch</th>
<th>P</th>
<th>A</th>
<th>B</th>
<th>T</th>
<th>X</th>
<th>Y</th>
<th>F₁</th>
<th>F₂</th>
<th>F₃</th>
<th>F₄</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.13</td>
<td>M5</td>
<td>M5</td>
<td>M5</td>
<td>M5</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 0.85</td>
<td>0.50</td>
<td>1.19</td>
<td>0.85</td>
<td>1.60</td>
<td>0</td>
<td>1.60</td>
<td>1.60</td>
<td>0</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y 1.02</td>
<td>0.61</td>
<td>0.61</td>
<td>0.20</td>
<td>0.35</td>
<td>0</td>
<td>-0.03</td>
<td>1.25</td>
<td>1.22</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Port X must not be drilled, not sealed at valve base.

Mounting surface needs flat within 0.01 mm (0.0004 in) over a distance of 100 mm (3.94 in). Average surface finish value, Ra = 0.8 µm.

Spare parts and Accessories

- **O-Rings (included in delivery)**
 - for ports P,T,A,B 4 pieces ID 9.25 x Φ 1.8 (ID 0.36 x Φ 0.07)
 - for port Y 1 piece ID 7.65 x Φ 1.8 (ID 0.30 x Φ 0.07)

- **Mating connector, waterproof IP65 (not included in delivery)**
 - 6+PE-pole B97007–061
 - EN 175201 Part 804

- **Flushing plates**
 - for P,A,B,T,X,Y B46634–002

- **Mounting manifolds**
 - on request

- **Mounting bolts (not included in delivery)**
 - M 5 x 55 DIN EN ISO 4762-10.9 A03665–050–055
 - required torque 8.5 Nm (75 inch pounds)
 - required 4 pieces
PERFORMANCE SPECIFICATIONS FOR STANDARD MODELS

<table>
<thead>
<tr>
<th>Model . . . Type</th>
<th>D634</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting pattern</td>
<td>ISO 4401-05-05-0-94</td>
</tr>
<tr>
<td>with or without leakage port Y ¹)</td>
<td></td>
</tr>
<tr>
<td>Port diameter</td>
<td>mm (in)</td>
</tr>
<tr>
<td>Valve version ¹)</td>
<td>Single stage, spool in bushing</td>
</tr>
<tr>
<td>Spool actuation</td>
<td>directly, with permanent magnet</td>
</tr>
<tr>
<td>Pilot supply</td>
<td>none</td>
</tr>
<tr>
<td>Mass</td>
<td>kg (lb)</td>
</tr>
<tr>
<td>Rated flow (±10%) at Δpₜₙ= 35 [500 psi] bar per land</td>
<td>l/min (gpm)</td>
</tr>
<tr>
<td>Max. valve flow</td>
<td>l/min (gpm)</td>
</tr>
<tr>
<td>Operating pressure max.</td>
<td></td>
</tr>
<tr>
<td>Ports P,A,B</td>
<td>bar (psi)</td>
</tr>
<tr>
<td>Port T without Y</td>
<td>bar (psi)</td>
</tr>
<tr>
<td>Port T with Y</td>
<td>bar (psi)</td>
</tr>
<tr>
<td>Port Y</td>
<td>bar (psi)</td>
</tr>
<tr>
<td>Response time for 0 to 100% stroke, typical</td>
<td>ms</td>
</tr>
<tr>
<td>Threshold ¹)</td>
<td>%</td>
</tr>
<tr>
<td>Hysteresis ¹)</td>
<td>%</td>
</tr>
<tr>
<td>Null shift ¹) with ΔT = 55 K</td>
<td>%</td>
</tr>
<tr>
<td>Null leakage flow ¹) max. (axis cut)</td>
<td>l/min (gpm)</td>
</tr>
</tbody>
</table>

1) At operating pressure pₜₙ = 140 bar (2000 psi), fluid viscosity of 32 mm²/s (0.05 in²/s) and fluid temperature of 40 °C (104 °F)
2) See symbols page 4
3) Leakage port Y must be used
 ➢ with 3- and 4-way function and pₜ > 50 bar (715 psi)
 ➢ with 2x2-way function
CHARACTERISTIC CURVES (TYPICAL)

Step response

- **Flow rate** $Q_{l/min}$ [gpm]:
 - 100 [26.3]
 - 200 [52.8]
 - 150 [39.6]
 - 80 [21.1]
 - 60 [15.8]
 - 40 [10.6]
 - 30 [7.9]
 - 15 [4.0]
 - 10 [2.6]
 - 8 [2.1]
 - 6 [1.6]
 - 4 [1.1]
 - 3 [0.79]
 - 2 [0.53]
 - 1 [0.26]

Valve pressure Δp bar [psi]:
- 10
- 20
- 30
- 50
- 70
- 100
- 150
- 200
- 350
- 145
- 290
- 435
- 725
- 1015
- 1450
- 2175
- 2900
- 5076

Flow signal characteristic curve

- Q/Q_n %
- Command signal / %

Frequency response

- **Amplitude ratio [dB]**:
 - $\pm 25\%$
 - $\pm 10\%$
 - $\pm 5\%$

- **Phase lag [degrees]**:
 - 5
 - 10
 - 20
 - 30
 - 50
 - 100
 - 200

Valve flow diagram

- Flow rate $Q_{l/min}$ [gpm]:
 - 100 [26.3]
 - 80 [21.1]
 - 60 [15.8]
 - 40 [10.6]
 - 30 [7.9]
 - 20 [5.3]
 - 10 [2.6]
 - 6 [1.6]
 - 4 [1.1]
 - 3 [0.79]
 - 2 [0.53]
 - 1 [0.26]

- **Valve pressure** Δp max = 350 bar (5000 psi)

- [145] [290] [435] [725] [1015] [1450] [2175] [2900] [5076]
 - Valves
 - [psi]

Pressure signal characteristic curve

- $\Delta p_{\text{rel}} / p_p$ %
- Command signal / %
Mounting pattern
ISO 4401-05-05-0-94, without X port

1) Port X must not be drilled, not sealed at valve base.
Mounting surface needs flat within 0.01 mm (0.0004 in) over a distance of 100 mm (3.94 in). Average surface finish value, Ra = 0.8 µm.

Spare parts and Accessories

<table>
<thead>
<tr>
<th>O-Rings (included in delivery)</th>
<th>5 pieces ID 12.4 x Ø 1.8 (ID 0.49 x Ø 0.07)</th>
<th>NBR 90 Shore 45122-004</th>
<th>FPM 90 Shore 42082-004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mating connector, waterproof IP65 (not included in delivery)</td>
<td>1 piece ID 15.6 x Ø 1.8 (ID 0.61 x Ø 0.07)</td>
<td>B97007-061</td>
<td>EN 175201 Part 804</td>
</tr>
<tr>
<td>Flushing plates</td>
<td>for P, A, B, T, T2, X, Y</td>
<td>B67728-001</td>
<td>B67728-002</td>
</tr>
<tr>
<td>Mounting manifolds</td>
<td>on request</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting bolts (not included in delivery)</td>
<td>M 6 x 60 DIN EN ISO 4762-10.9 A03665-060-060</td>
<td>required torque 13 Nm (115 inch pounds)</td>
<td>required 4 pieces</td>
</tr>
</tbody>
</table>
ORDERING INFORMATION

Model-Number

D 63

Type designation

.

Series

3 Size 03
4 Size 05

Specification-Status

- Series specification
E Preseries specification
K explosion proof version upon request
Z Special specification

Model designation

assigned at the factory

Factory identification

Valve version

R with integrated electronics

Rated flow

\[Q_n \text{[l/min] at } \Delta p_n = 35 \text{ bar}, \Delta p_n = 5 \text{ bar per land} \quad \text{Series} \]

<table>
<thead>
<tr>
<th>Size</th>
<th>Qn (l/min)</th>
<th>Qn (gpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>5 (1.3)</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>10 (2.6)</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>20 (5.3)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>40 (10.6)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>60 (15.8)</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>100 (26.3)</td>
<td></td>
</tr>
</tbody>
</table>

Maximum operating pressure

K 350 bar (5000 psi)

Supply voltage

2 24 VDC (19 to 32 VDC)

Signals for 100% spool stroke*

Command Output

M ±10 VDC ±4 to +20 mA
X ±10 mA, floating ±4 to +20 mA
deadband compensation on request

Valve connector

S 6+PE pole EN 175201 Part 804

Seal material

N NBR (Buna)
V FPM (Viton)
others on request

Y- port

0 closed with plug \(p_{\text{max}} = 50 \text{ bar (715 psi)} \)
3 open, with filter insert \(p > 50 \text{ bar (715 psi)} \)

Spool position without electric supply

M mid position
F P B, A T connected (10% open)
D P A, B T connected (10% open)
other openings on request

Linear motor Series

1 Standard D633
2 Standard D634

Bushing / Spool type

0 4-way: axis cut, linear characteristic
A 4-way: 1.5 to 3% overlap, linear characteristic
D 4-way: 10% overlap, linear characteristic
Z 2x2-way: P A, B T, with Y-port only
X Special spool on request

Options may increase price and delivery.
All combinations may not be available.
Preferred configurations are highlighted.
Technical changes are reserved.

*(input voltage limited, see page 6)